New portable technology that visualises clots forming in flowing blood in a 3D holographic livestream promises to dramatically improve screening and treatment of stroke, heart attack and coronavirus-induced lung failure. 

Millions of people around the world die from heart attacks and strokes every year, and 2.5 million people have died due to coronavirus globally since the pandemic began. 

In a world first, the biomedical invention from The Australian National University (ANU) can measure a blood clot’s “stickiness” and “optically weigh” it, within a thousand millionth of a gram, to assess a person’s disease risk.    

ANU biomedical imaging scientist and research leader Dr Steve Lee said this technology advances his team’s breakthrough 2018 prototype diagnostic device in two critical ways. His multidisciplinary team has expertise in imaging sciences, medicine and biochemistry.   

“We can now measure the stickiness of the blood clot down to a single platelet and we’ve dramatically reduced the size of our invention so that it can fit on a small desk or bench space in a hospital or another healthcare setting,” Dr Lee from the John Curtin School of Medical Research (JCSMR) said.   

Dr Steve Lee with the new technology that can examine blood clots to assess a person’s disease risk. Photo: Jamie Kidston/ANU

The new high-speed imaging technology, known as COSI (coherent optical scattering and interferometry), revealed in experiments how individual platelets “grip and walk” along a collagen fibre under blood flow.  

“Platelets, which are a tenth of the size of a regular cell and are the major drivers of blood clot formation, move much like a circus performer walking along on a high wire,” Dr Lee said. 

He said existing imaging tools are too slow to capture single platelet actions before they clump together within seconds of being activated.  

“COSI has a very fast and high-resolution imaging process with no labeling, so it can capture the behaviour of individual platelets before they clump together,” Dr Lee said.   

The breakthrough could be vital to study micro-blood clots in capillaries involved in lung failure related to COVID19, Dr Lee said.  

Ms Yujie Zheng, the team’s lead PhD scholar, said seeing a platelet move in an orchestrated way within a developing blood clot, before suddenly freezing as she added a chemical inhibitor was a Eureka moment.   

“That was a very exciting moment for us, because we could see these nanoscale events happening for the first time in a clot forming before our eyes,” Ms Zheng said.   

Dr Lee’s team has worked closely with JCSMR’s National Platelet Research and Referral Centre led by Professor Elizabeth Gardiner. The collaboration has already received competitive research funding totalling $1.8 million.  

“We have now moved beyond the proof of principle and are trialing COSI on a variety of patient samples with NPRC medical researchers with the aim to commercialise the technology within two years,” Dr Lee said.  

The team’s work is published in the Biophysical Journal (Cell Press)

Top image: Jamie Kidston/ANU

Contact the media team

You may also like

Article Card Image

‘Cancer-blocking’ protein offers potential to transform cells from destructive to constructive

An immune protein could hold the key to developing new drugs to help fight bowel cancer, according to new research from ANU.

Article Card Image

Aussies above 50 are living longer, while younger people are suffering

Australians under fifty are experiencing stagnating life expectancy while older cohorts, especially men, are living longer, according to new ANU research.

Article Card Image

Attacks on health care during war are becoming more common, creating devastating ripple effects

Medical services are protected under international law. When they are attacked without any consequences, it sends the message healthcare workers and patients are acceptable targets.

Subscribe to ANU Reporter