When news broke of Australia’s first cases of COVID-19 in early 2020, biologist Dr Benjamin Schwessinger’s immediate reaction was “I think we can help”. 

Schwessinger reached out to ACT Health and offered his services to help map the genomics of this new virus.  

If the virus transmission is a puzzle, then genomes are the pieces that can help track it. They are the building blocks behind the deadly SARS-COV-2 virus. 

Schwessinger says having this type of information can help with detecting new variants and working out how the virus is spread.  

“Genomics allow us to tell if a new variant of concern has emerged,” he says. 

“It also helps with determining how COVID-19 is being passed from person-to-person within the community.” 

Initially, there weren’t many cases in the ACT to work with. But when that all changed in August this year, Schwessinger and his team were ready to swing into action as the delta outbreak hit Canberra. 

“The extra time we had without a significant number of cases in the ACT really allowed us to prepare,” he says. 

“When the first identified case of this most recent outbreak emerged, I got the call from ACT Pathology over breakfast, and we were able to do our analysis that same day.” 

The process involves extracting RNA from the specimen collected from a positive case and building its genetic profile. This allows each case to be put into a local and national context. 

“Since the start of this outbreak we’ve been initially sequencing basically every case,” Schwessinger says. 

“We pick the positive samples up every afternoon and start sequencing overnight. It’s all done on a portable sequencer about the size of mobile phone.” 

ANU experts (from left) Emma Crean, Dr Benjamin Schwessinger and Dr Ashley Jones have been mapping the genomics of COVID-19 cases in the ACT. Photo: Tracey Nearmy/ANU

This team of disease detectives have successfully sequenced virus collected from over 85 per cent of all cases in the ACT – work that would otherwise had to have been outsourced. 

“If we weren’t doing this work, the samples would have to go to health services in Sydney or Melbourne that are already overloaded,” Schwessinger says. 

“Turnaround time is key to support epidemiological investigation by ACT Health as genetic linkages help discover and confirm transmission chains. It’s a bit like bread from the bakery, best enjoyed fresh as it goes stale pretty quickly.” 

The team hopes to be able to continue their collaboration with ACT Health in the event other transmissible diseases pop up in the ACT in the future.  

Schwessinger is fitting the genomic sequencing in around lectures and helping his students, but says it’s all part of the job and important to our community. 

“In my mind, this is what universities are for, to provide solutions to problems,” he says. 

“As researchers it’s our mission to contribute to solving big problems, whether it’s climate change or a public health crisis like COVID-19.” 

Top image: ANU researchers (from left) Dr Ashley Jones, Dr Benjamin Schwessinger and Emma Crean. Photo: Tracey Nearmy/ANU

Contact the media team

Jess Fagan

Media Manager


You may also like

Article Card Image

Coercive control takes significant toll on children

Coercive control can be traumatising for children, even when they are not the direct targets, ANU researchers have found.

Article Card Image

ANU researchers closer to finding new lung cancer treatments

A new discovery could help the human immune system “see and destroy” the cells behind killer diseases like lung cancer.  

Article Card Image

ANU and Korean biotech firm set sights on finding cure for blindness 

Korean biotech company MDimune Inc. and ANU researchers are joining forces to develop new and more effective treatments for age-related macular degeneration – the leading cause of blindness in the developed world.  

Subscribe to ANU Reporter

Anu Logo

+61 2 6125 5111

The Australian National University, Canberra

CRICOS Provider: 00120C

ABN: 52 234 063 906

EDX Logo
APRU Logo
IARU Logo
Group of eight Australia Logo