Mobile phones and other electronic devices made from an organic material that is thin, bendable and more powerful are now a step closer thanks to new research led by scientists at The Australian University (ANU).  

Lead researchers Dr Ankur Sharma and Associate Professor Larry Lu say it would help create the next generation of ultra-fast electronic chips, which promise to be much faster than current electronic chips we use.

“Conventional devices run on electricity – but this material allows us to use light or photons, which travels much faster,” Dr Sharma said.  

“The interesting properties we have observed in this material make it a contender for super-fast electronic processors and chips. 

 “We now have the perfect building block to achieve flexible next generation electronics.”

Associate Professor Lu said they observed interesting functions and capabilities in their organic material, previously unseen.

“The capabilities we observed in this material that can help us achieve ultra-fast electronic devices,” said Associate Professor Lu. 

Associate Professor Larry Lu and Dr Ankur Sharma. Photo: Jack Fox/ANU

The team were able to control the growth of a novel organic semiconductor material – stacking one molecule precisely over the other.  

“The material is just one carbon atom thick, a hundred times thinner than a human hair, which gives it the flexibility to be bent into any shape. This will lead to its application in flexible electronic devices.”

In 2018 the same team developed a material that combined both organic and inorganic elements. 

Now, they’ve been able to improve the organic part of the material, allowing them to completely remove the inorganic component. 

“It’s made from just carbon and hydrogen, which would mean devices can be biodegradable or easily recyclable, thus avoiding the tonnes of e-waste generated by current generation electronic devices,” Dr Sharma said. 

Dr Sharma says while the actual devices might still be some way off, this new study is an important next step, and a key demonstration of this new material’s immense capabilities. 

The research has been published in the journal Nature: Light Science & Applications  

 Top image: Associate Professor Larry Lu and Dr Ankur Sharma. Photo: Jack Fox/ANU

Related tags:

You may also like

Article Card Image

The nuclear scientist planning life on other planets

From exploring the mysteries of dark matter, to planting the seeds of human life away from Earth, Lachlan McKie is using nuclear science to solve some of our most complex questions.

Article Card Image

Going nuclear for Nemo: how ANU scientists are helping save the Great Barrier Reef 

ANU is home to one of the world’s most innovative nuclear science facilities and programs. This work is helping protect environmental treasures like the world’s largest coral reef, understand the origins of life on our planet and launch tech into space.

Article Card Image

Three nuclear science discoveries from ANU you should know about

Nuclear scientists at ANU are at the forefront of major discoveries shaping our understanding of life on Earth and beyond the stars.

Subscribe to ANU Reporter

Anu Logo

+61 2 6125 5111

The Australian National University, Canberra

CRICOS Provider: 00120C

ABN: 52 234 063 906

EDX Logo
APRU Logo
IARU Logo
Group of eight Australia Logo