Researchers from The Australian National University (ANU) have found an alternative explanation for a mysterious gamma-ray signal coming from the centre of the galaxy, which was long claimed as a signature of dark matter. 

Gamma-rays are the form of electromagnetic radiation with the shortest wavelength and highest energy.  

Co-author of the study Associate Professor Roland Crocker said this particular gamma-ray signal – known as the Galactic Centre Excess – may actually come from a specific type of rapidly-rotating neutron star, the super-dense stellar remnants of some stars much more massive than our sun.  

View of the gamma-ray sky. Image: NASA/DOE/Fermi LAT Collaboration

The Galactic Centre Excess is an unexpected concentration of gamma-rays emerging from the centre of our galaxy that has long puzzled astronomers.

“Our work does not throw any doubt on the existence of the signal, but offers another potential source,” Associate Professor Crocker said. 

“It is based on millisecond pulsars — neutron stars that spin really quickly — around 100 times a second. 

“Scientists have previously detected gamma-ray emissions from individual millisecond pulsars in the neighbourhood of the solar system, so we know these objects emit gamma-rays. Our model demonstrates that the integrated emission from a whole population of such stars, around 100,000 in number, would produce a signal entirely compatible with the Galactic Centre Excess.”  

The discovery may mean scientists have to re-think where they look for clues about dark matter. 

“The nature of dark matter is entirely unknown, so any potential clues garner a lot of excitement,” Associate Professor Crocker said.  

“But our results point to another important source of gamma-ray production.  

“For instance, the gamma-ray signal from Andromeda, the next closest large galaxy to our own may be mostly due to millisecond pulsars.” 

ANU Masters student Anuj Gautam led the research, which also involved scientists from The Australian Defence Force Academy, University of Canterbury, and University of Tokyo.    

The research has been published in Nature Astronomy. 

Contact the media team

Jess Fagan

Media Manager


You may also like

Article Card Image

What can we learn from the CrowdStrike global IT outage?

This is the national conversation Australia should be having in the wake of the global outage.

Article Card Image

Would you pay to quit TikTok and Instagram? You’d be surprised how many would

Even though social media is free to use, research found many US university students would pay to quit it - if only they could beat their fear of missing out.

Article Card Image

DNA structure could hold key to our memory

A specific type of DNA structure could hold the key to regulating our memory, a new ANU study has shown.  

Subscribe to ANU Reporter