Researchers from The Australian National University (ANU) have exposed a fatal flaw in the deadly parasite that causes malaria – one of the world’s biggest killers.

The researchers discovered a vulnerability in the parasite’s metabolism, where the breakdown of certain nutrients causes the cell to struggle to keep fat molecules where they should be. The flaw could be harnessed for treatment. 

Malaria is an often fatal disease caused by the spread of a parasite transmitted from mosquitos to humans. The parasite travels from the mosquito into the body’s red blood cells where it hides from the immune system, making it difficult to naturally eradicate.

By overloading the infected cell with calcium and depleting the amount of cholesterol, fat-moving proteins are activated, sending an “eat me” signal from the parasite to the body’s immune system.

Lead researcher and ANU PhD candidate, Merryn Fraser, says these chinks in the parasite’s armour could be exploited to formulate new drugs to battle malaria.

“We’ve shown that we can use chemical treatments to make the parasites more susceptible to being eaten by immune cells. That indicates we could maybe do the same thing with a drug,” Ms Fraser, from the ANU Research School of Biology, said.

“We found that when the parasite ingests certain nutrients, it causes the red blood cell to turn on a distress beacon. This would call the immune cells in to attack the parasite.

“We then found that we could exploit this vulnerability by using a particular chemical on the red blood cells, which increased the chances of the parasites being eaten by the immune cells.”

The researchers say in recent years malaria parasites have become increasingly resistant to the main drugs used for treating malaria.

“We’re getting really worried about parasite drug resistance and that is underpinning our need to look for new drugs and new treatments,” Ms Fraser said.

“We don’t have a highly effective vaccine, so while that is still being developed, we really need to make sure that we have other ways of effectively treating the disease.”

Malaria killed over 200,000 people last year and remains the deadliest parasitic disease in the world.

The researchers say climate change could have increased the range of the habitat that the mosquitos that spread malaria can live in. This has reinforced the urgent need for new methods of fighting the disease.

These new findings come as part of a larger study into how the malaria parasite interacts with red blood cells and the immune system.

“What we’ve really been trying to study is what happens to the parasite while it lives in the red blood cells so we can learn as much as possible about malaria and how it operates,” Ms Fraser said.

“Understanding these weaknesses in the parasite is another step in moving towards our big target of eliminating malaria worldwide.”

Top image: Ravi Kant/Pexels

Contact the media team

You may also like

Article Card Image

ANU researchers closer to finding new lung cancer treatments

A new discovery could help the human immune system “see and destroy” the cells behind killer diseases like lung cancer.  

Article Card Image

ANU and Korean biotech firm set sights on finding cure for blindness 

Korean biotech company MDimune Inc. and ANU researchers are joining forces to develop new and more effective treatments for age-related macular degeneration – the leading cause of blindness in the developed world.  

Article Card Image

Women are 50–75% more likely to have adverse drug reactions. A new study helps explain why

The assumption that females are just smaller versions of males has been widely used in biomedical research. A new mouse study indicates that’s unlikely to be the case.

Subscribe to ANU Reporter

Anu Logo

+61 2 6125 5111

The Australian National University, Canberra

CRICOS Provider: 00120C

ABN: 52 234 063 906

EDX Logo
APRU Logo
IARU Logo
Group of eight Australia Logo