In a world-first, ANU astronomers have discovered evidence of a massive explosion that led to the destruction of a rapidly spinning, strongly magnetized star.  

In a world-first, astronomers from The Australian National University (ANU) have discovered evidence of a massive explosion that led to the destruction of a rapidly spinning, strongly magnetized star.  

The so-called “magneto-rotational hypernova” occurred around a billion years after the Big Bang and was 10-times more energetic than a supernova.   

The breakthrough discovery, led by an international team of scientists, offers clues for why an unusually high concentration of metal elements were present in another ancient Milky Way star.

The star, SMSS J200322.54-114203.3, had higher amounts of zinc, uranium and europium, compared to the first stars in the universe which were predominantly made up of hydrogen and helium.

“We calculate that 13-billion-years ago, J200322.54-114203.3 formed out of a chemical soup that contained the remains of this type of hypernova,” Dr David Yong, from the ANU Research School of Astronomy and Astrophysics, said.

“No one’s ever found this phenomenon before.

“It is a very rare star, and the fact that it contains much larger than expected amounts of some heavier elements means that it is even rarer – a real needle in a haystack.”

Nobel Laureate and ANU Vice-Chancellor Professor Brian Schmidt is a co-author of the study.

“The high zinc abundance is a definite marker of a hypernova, a very energetic supernova,” he said.

A key feature of the star was its rapid rotation. While hypernovae have been observed since the 1990s, this is the first time one combining rapid rotation and strong magnetism has been detected.

Until now, researchers were unable to explain why this star contained unusually high traces of metals.

“We now find the observational evidence for the first time directly indicating that there was a different kind of hypernova producing all stable elements in the periodic table at once – a core-collapse explosion of a fast-spinning strongly-magnetized massive star,” Associate Professor Chiaki Kobayashi, from the University of Hertfordshire in the UK, said.

“It is the only thing that explains the results.”

The research also involved members from the ARC Centre of Excellence in All Sky Astrophysics in 3 Dimensions (ASTRO 3D).

“This is an extremely important discovery that reveals a new pathway for the formation of heavy elements in the infant universe,” ASTRO 3D Director and ANU Professor Lisa Kewley said. 

The research has been published in the journal Nature.

You may also like

Article Card Image

New technology takes kilos off early universe’s supermassive black holes

One of the most powerful black holes in the universe is belching out gas at speeds of up to 10,000 kilometres per second, making its estimated mass more than 10 times lower than first thought.

Article Card Image

Most-detailed collision of black holes provides strongest evidence yet to support Hawking’s 50-year-old prediction

A global team of scientists including researchers from ANU have detected the strongest and cleanest black hole ‘note’ ever heard.

Article Card Image

From code to care: ANU research on AI is changing lives

Dr Chirath Hettiarachchi is harnessing artificial intelligence to help people living with diabetes and depression. And he’s only just getting started.

Subscribe to ANU Reporter